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Bayesian spatio-temporal CPUE standardization: case study of European
sardine (Sardina pilchardus) ulong the western coast of Portugal

Fishery dependent data is the most common source of
data for assessment methods and it's collected with
daily frequency.

Catch-per-unit-effort (CPUE) data can be influenced
by factors such as environmental variables, fishing
methods, fishing grounds, vessel length, fishing
restrictions and economics (Maunder & Langley, 2004).

Objective

Standardize sardine’s purse seine fishery dependent data as a relative abundance index (CPUE) with A
Hierarchical Bayesian spatio-temporal model through R-INLA using different types ofrandom effects (Rue et

al., 2009).
Methods and Results
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The INE of HBSTM's Is a very flexible
fool to model CPUE data as it allows
to Include several variables as o2
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different types of random effects.
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The 5 environmental variables were
not relevant for this particular s st pmR T
dataset what can be due 1o factors

such as a small time series.
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Including a spatio-temporal ferm
helps to explain the spatfial and
temporal variabillity originated by
unknown variables/proecesess that s
are not included in the model. R S "~ P
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