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The use of HBSTM’s is a very flexible

tool to model CPUE data as it allows

to include several variables as

different types of random effects.

The 5 environmental variables were

not relevant for this particular

dataset what can be due to factors

such as a small time series.

Including a spatio-temporal term

helps to explain the spatial and

temporal variability originated by

unknown variables/proecesess that

are not included in the model.

Fishery dependent data is the most common source of

data for assessment methods and it’s collected with

daily frequency.

Catch-per-unit-effort (CPUE) data can be influenced

by factors such as environmental variables, fishing

methods, fishing grounds, vessel length, fishing

restrictions and economics (Maunder & Langley, 2004).
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The dataset consist of combined VMS and

Logbook data from vessels > 15 cm (Katara

& Silva, 2017) within the period 2011-2013.

Best model selected via DIC, WAIC and

LCPO.

Region ID, harbour ID, tonnes, engine power,

Bathymetry, CHL-a, SST, Intensity, Direction.
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Standardize sardine’s purse seine fishery dependent data as a relative abundance index (CPUE) with a

Hierarchical Bayesian spatio-temporal model through R-INLA using different types ofrandom effects (Rue et

al., 2009).
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