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Introduction
Research surveys used to monitor fishery resources of commercial interest constitute the main fishery-
independent data source for stock assessment. IPMA conducts research surveys since 1980. The survey’s
sampling design was conceived with the focus on specific species but additionally they provide information
to monitor other species. Rays and skates are important commercial by-catches whose exploitation is of
generalized conservation concern given their biological and spatial dynamics characteristics.
The main aims of this study were to:
• Investigate spatial sampling designs for the Portuguese demersal surveys to improve the accuracy of

the estimation of Raja clavata biomass without jeopardizing the estimation of Merluccius merluccius
abundance.
• Propose alternative sampling designs that consider the estimated spatial distribution for both R. clavata

biomass and M. merluccius abundance.

Data
The study used the demersal surveys conducted from 2013 to 2016. Data concerns georeferenced fishing
locations (hauls) performed west off mainland Portugal, and for each, the sampled biomass (in Kg
per hour) of thornback ray (R. clavata) (Figure 1a). Additionally, for 2015 and 2016, total and juveniles
abundance (in numbers per hour) of European hake (M. merluccius) caught at each fishing haul was also
available (Figure 1b). We have considered two environmental variables, bathymetry and seabed sub-
stratum.
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Figure 1: Exploitable biomass (Kg per hour) of R. clavata (left) and total abundance (number per hour) of M. merluccius
(right) by year.

Species Distribution Model
The biomass of R. clavata and the abundance of M. merluccius were modelled with a two-part model:
species occurrence was generated by a Bernoulli distribution and the biomass/abundance given the occurrence
by a Gamma distribution.
Let Y (s) be the spatially distributed biomass or abundance process (depending on the species) at location s
and Z(s) denotes the occurrence sub-process. Z(s) takes the value 0 if no species was observed in location
s and 1 otherwise. Y (s)|(Z(s) = 1) takes the positive value of biomass or abundance index observed in
location s. Therefore, Z(s) ∼ Bernoulli(p(s)) and Y (s)|(Z(s) = 1) ∼ Gamma(a(s), b(s)). Consequently,
the two-part model can be defined by:

logit(p(s)) = α1 +
p1∑
j=1

βi,jf (X1,j(s)) + W (s) (1)

and
log(a(s)/b(s)) = α2 +

p2∑
j=1

βi,jf (X2,j(s)) + kW (s) (2)

where f (.) denotes possible transformation functions (e.g., linear splines (Zuur et al., 2017) and logarithm)
of environmental covariates, Xi,j(s). α1 and α2 terms represent the intercepts, and βi,j, i = 1, 2 are the
regression coefficients (representing the impact of environmental conditions on response variable). W (s) is
a Gaussian Markov Random Field, an approximation via SPDE of an underlying Gaussian Field (Lindgren
et al., 2011) and [Y (s)] = [Z(s)] [Y (s)|(Z(s) = 1)] width [.] meaning “distribution of”.

Evaluation of alternative designs
The survey design to be proposed was defined according to the standard survey protocol, which includes
a total of 65 stations, from which 54 were previously identified as fixed stations and 11 stations selected
according to different sampling procedures.

Algorithm 1: Sampling procedure
1. Enumerate the biomass/abundance (yis, i = R,M) and the standard deviation of spatial effects

(σis, i = R,M) for each species i .
2. Select 11 locations according to wms for each of the 8 measures m presented in Table 1.
3. Construct the alternative designs Dm merging the fixed locations and the locations selected in 2.

Table 1: Measures to select locations for the 11 fishing hauls and corresponding objectives.

Measure m Weight wms Objective

1 vRs × vMs
Minimize the uncertainty of what was not explained by
the models applied to R. clavata and M. merluccius.

2 vRs
1− uRs

× vMs
1− uMs

 Same objective of measure 1 maximizing, at same time,
the biomass/abundance of both species.

3 vRs
1− uRs

× vMs
Same objective of measure 1 maximizing the biomass
of R. clavata.

4 vRs × vMs × qs
Same objective of measure 1 giving importance to sectors
of the study area.

5 σ̂Rs
Minimize the uncertainty of what was not explained by
the model for R. clavata.

6 σ̂Rs
1− uRs

 Same objective of measure 5 maximizing, at same time,
the biomass of R. clavata.

7 σ̂Rs × qs
Same objective of measure 5 giving importance to sectors
of the study area.

8
√√√√(

√
uRs −

√
uMs )2 Maximize the similarity between the distributions of the

two species.

where uis = ŷis
max{ŷi.}

and vis = σ̂is
max{σ̂i.}

. qs means the sector weight for location s. The sector weight takes
integers values from 1 to 9, where the sector with 1 corresponds to sector with the highest estimated mean
of R. clavata biomass and the sector identified by 9 is the sector with the lowest estimated mean.

Algorithm 2: Performance of sampling designs
1. Estimate the biomass of R. clavata and the abundance of M. merluccius, in the locations observed in

2015, based on the estimates of each Dm obtained in Algorithm 1.
2. Compute Root Mean Squared Error RMSEi(m), Mean Absolute Error MAEi(m), stratified mean
ȳistr(m) and respective stratified variance s2

ȳstr
i(m).

3. Repeat 1 and 2 based on 200 alternative designs where the locations of the 11 fishing hauls were selected
according to a spatial randomness method.

Main results
The highest biomass values of R. clavata were observed in the area near Lisbon, particularly in the last two
years. In most fishing hauls, the percentage of zero catches of adults varied between 72% and 88% depending
on the year. The 2015 survey abundance of M. merluccius was higher than in 2016, namely in the north.
The results of the Species Distribution Models show that:
• the probability of occurrence of R. clavata increases for locations corresponding to the mixed

sediment substratum, but decreases with bathymetry in this substratum;
•R. clavata biomass decreases with bathymetry;
•M. merluccius abundance increases with bathymetry, by 15 specimens until 92 m depth and 31

specimens in deeper waters (both for an increase of about 2.7 m in bathymetry);
•M. merluccius is more than twice abundant in substratum mud to muddy sand locations.

Figure 2: Posterior median of the predictive distribution
of biomass (left panel) and posterior standard deviations
(right panel) of spatial effects of R. clavata.

Figure 3: Posterior median of the predictive distribution
of abundance (left panel) and posterior standard deviations
(right panel) of spatial effects of M. merluccius.

As an example, Figure 4 shows the densities of 200 values of MAE and RMSE resulting from the estimation of
R. clavata biomass and M. merluccius total abundance using the random samples and the 3 best sampling
designs.

Figure 4: Densities of 200 values of MAE (left panels) and RMSE (right panels) resulting from estimation for R. clavata
biomass (top panels) and M. merluccius abundance (bottom panels) using the random samples. Vertical lines represent the 3
best proposed surveys (with lowest values of MAE and RMSE).

Conclusions
• Sampling designs 4, 7 and 8 (highlighted in Table 1) resulted in higher accuracy of R. clavata biomass

and M. merluccius abundance estimates than that obtained with a random selection of fishing stations.
• Sampling design 7 maximizing the accuracy of R. clavata biomass estimates shows an acceptable trade-off

between bias and variance of M. merluccius abundance estimates.
• The approach presented in this study can be easily replicated to analyse other sampling efforts and/or

other group of species caught by the research survey.
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