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Abstract38

Time series of abundance indices are the main source of information to calibrate stock as-39

sessment models. Precise abundance indices are essential for successful conservation and40

management of fish stocks. Commonly, scientific standardized surveys are used for this aim41

and to ensure that estimates are unbiased. However, the accuracy of these estimated indices42

may be low under certain circumstances. In particular the common sole (Solea solea) is43

a species with a biological bathymetric range between 0 and 200 meters in the Iberian At-44

lantic waters. The annual scientific survey that collects data for demersal species in this area45

only cover partially this bathymetric range and the resultant abundance indexes are con-46

sequently underestimated. In addition, habitat variables, (i.e., bathymetry), can influence47

these estimates as well as the species spatio-temporal variability. Alternatively, standard-48

ized CPUEs (catch per unit effort) derived fishery-dependent data can be used as a proxy of49

the species abundance. In this study two different spatio-temporal abundances indices were50

computed and the impacts on the common sole evaluation using as stock assessment model51

the SPiCT (stochastic surplus production model in continuous time) were analyzed. Both52

abundance indices were produced using Bayesian hierarchical spatio-temporal models, con-53

sidering bathymetry as an environmental variable and testing three different spatio-temporal54

structures (i.e. opportunistic, progressive and persistent) to categorize the spatio-temporal55

behaviour of the sole. We argue that using explicitly spatio-temporal abundance indexes can56

improve the assessment of stocks and in particular for the ones that are in a data-limited57

situation.58

Introduction59

Fishery independent surveys provide important information for species stock assessment60

and consequently for fisheries management (Cao et al., 2017). Abundance indices are one of61

the primary information derived from scientific surveys, and are essential to calibrate species62
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stock assessment models. Therefore the accuracy of the abundance indices is essential for the63

stocks evaluation and the subsequent management decisions (e.g., total allowable catches).64

Commonly scientific surveys are designed with randomized sampling locations and to65

ensure that estimates, as abundance indices, are unbiased. However, under certain circum-66

stances, surveys may produce imprecise estimates of abundance, particularly for species with67

preferential habitats that are in strata only partially included in the survey sampling design.68

Therefore, in these cases, the spatial species variation is not adequately captured.69

The common sole (Solea solea) is a species with a biological bathymetric range between70

0 and 200 meters in the Iberian Atlantic waters. The annual scientific survey that collects71

data for demersal species in this area only cover partially the sole bathymetric range and72

the resultant abundance index is probably underestimated.73

Recently, spatio-temporal models have been implemented to produce more precise abun-74

dance indices than the ones provided by conventional surveys (Cao et al., 2017; Thorson,75

2015). Indeed, spatio-temporal models can overcome this problem as they link information76

on the abundance or presence/absence of a species to the space to predict where (and how77

much of) a species is likely to be present in unsampled locations elsewhere in a area or78

period of time (Pennino et al., 2019). Additionally, spatio-temporal models can include as79

covariates environmental variables, (e.g. bathymetry, temperature, salinity, etc.) and poten-80

tially generate more precise estimates of abundance, especially when the underlying species81

distribution is dependent on habitat features.82

Different studies have applied spatio-temporal models to improve abundance indices (Cao83

et al., 2017; Shelton et al., 2014; Thorson, 2015). For example, Thorson (2015) implemented84

spatio-temporal models to compare the abundance indices of 28 groundfish species off the85

U.S. West Coast with conventional surveys indices. Overall, abundance indices showed86

similar trends but the uncertainty associated with the spatio-temporal indices was widely87

lower than the one of conventional indices.88

Alternatively, fishery-dependent data collected from fishery observers on-board commer-89

cial vessels or logbooks can be used to construct standardized indices of relative abundance90

for stock assessment models (Alonso-Fernández et al., 2019). Several standardization tech-91

niques have been used for fishery-dependent data of many species (Campbell, 2015; Maunder92

and Punt, 2004), including also environmental variables and spatio-temporal effects (Alonso-93

Fernández et al., 2019; Teo and Block, 2010). Overall these methods have been proved to be94

a useful tool to address ecological and assessment issues, especially in data limited situations95

(Alonso-Fernández et al., 2019).96

However, few studies showed the impact of using a spatio-temporal index in stock as-97

sessment models and the derived performance. Recently, Cao et al. (2017) did this exercise98

for the northern shrimp (Pandalus borealis) in the Gulf of Maine. Results of this study99

showed that using the spatio-temporal index in the assessment model alters the estimates of100

recruitment and spawning stock biomass, as well as the determination of the stock status.101

Also, the inclusion of the spatio-temporal index in the assessment improved the predictive102

performance of the model reducing the retrospective bias.103

Given that the abundance index provides primary information for stock assessment, such104

studies are essential to better understand the practical improvement of spatio-temporal index105

standardization.106

Within this context, in this study two different spatio-temporal abundance indices were107
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produced using (1) a fishery-independent data-set from 2001-2019 collected trough scientific108

trawl surveys; and (2) a fishery-dependent data-set collected by observers on-board artisanal109

fisheries vessels from 2000-2018. Both data-sets were analyzed using a Bayesian hierarchical110

spatio-temporal models, considering bathymetry as an environmental variable.111

Produced indices were included in the common sole SPiCT (stochastic surplus production112

model in continuous time) stock assessment model and performance were explored.113

We argue that using explicitly spatio-temporal abundance indices can improve the as-114

sessment of stocks and in particular for the ones that are in a data-limited situation.115

Material and Methods116

Abundance data117

Fishery-independent data118

Fishery-independent data were collected during the scientific survey series “SP-NSGFS Q4”119

by the “Instituto Español de Oceanograf́ıa” (IEO) carried out in autumn (September to120

October) from 2001 to 2019. The ”SP-NSGFS Q4” survey makes use of a stratified sampling121

design based on depth with three bathymetric strata: 70–120 m, 121–200 m and 201–500 m.122

Sampling stations consisted of 30 min trawling hauls located randomly within each stratum at123

the beginning of the design (Figure 1). Approximately 115 hauls divided between the three124

bathymetric strata were performed every year in this zone, using the baka 44/60 gear and125

following the protocol of the International Bottom Trawl Survey Working Group (IBTSWG)126

of ICES (ICES, 2017). Due to the high number of zeros only the first two bathymetric strata127

(i.e., 70–120 m, 121–200 m) were considered in this study, that correspond with the common128

sole bathymetric biological range.129

Two different variables were analyzed in order to characterize the spatio-temporal behav-130

ior of common sole individuals. First, we considered a presence/absence variable to measure131

the occurrence probability of the species. Secondly, we used the weight by haul (kg) as an132

indicator of the conditional-to-presence abundance of the species.133

Fishery-dependent data134

Fishery-dependent data were collected by the Galician government Technical Unit of Ar-135

tisanal Fisheries (Unidade Técnica de Pesca de Baixura, UTPB, in Galician). Usually an136

on-board observer is assigned to fishing vessels randomly selected from this sector and covers137

the full set of multiple gears used in Galician waters and all along the geographical range138

(Figure 2). In a single trip each vessel usually performs several hauls. At each haul, ob-139

servers record all basic operational data (i.e., date, geographical position, gear, etc.) and the140

number and weight of all retained and discarded taxa. The analysed database in this study141

counts 4350 hauls for which common sole was caught from January 2000 until December142

2018.143

Before fitting any model, we selected the data for the trammel net which is the most144

representative gear for the common sole in order to reduce sources of variation. This selection145

was based on three criteria: i) proportion of hauls with zero catch, ii) total number of146
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individuals sampled and iii) the spatio-temporal coverage. The first and second criterion147

were used as proxies of gear catchability and thus constant catchability was assumed along148

the time series (Alonso-Fernández et al., 2019).149

Modelling abundance data150

Fishery-independent data151

The annual scientific survey that collects data for demersal species in the studied area152

only cover partially the common sole bathymetric range and the resultant abundance in-153

dex presents a large proportions of zeros observed, i.e., zero inflated data. This data is154

commonly analysed using two-part models, also known as delta models. Generally, both oc-155

currence and abundance are modelled through independent models. However, the abundance156

and occurrence processes are often related, thus violating the independence assumption of157

common delta models. In this study we applied hurdle Bayesian spatio-temporal models158

that fitted simultaneously the common sole occurrence and conditional-to-presence abun-159

dance processes sharing bathymetry effects. These effects were incorporated as described in160

Paradinas et al. (2017) in order to incorporate information on both the occurrence and the161

abundance to better fit informed environmental effects.162

Bathymetry values were retrieved from the European Marine Observation and Data Net-163

work (EMODnet, http://www.emodnet.eu/) with a spatial resolution of 0.02 x 0.02 decimal164

degrees (20 m).165

Models were fitted using the integrated nested Laplace approximation approach (Rue166

et al., 2009) in the R (R Core Team, 2017) software. For the spatial component the spatial167

partial differential equations (SPDE) module (Lindgren et al., 2011) of INLA was imple-168

mented. With the SPDE, the spatial field (Ws) was modelled as a multivariate normal169

distribution with zero mean and a Matérn covariance function that depend on its range (rw)170

and variance (σw).171

Additionally, in order to categorize the spatio-temporal behaviour of the common sole,172

three different spatio-temporal structures were compared (Paradinas et al., 2017) (see Ta-173

ble 1). In particular, opportunistic structures indicate that species change their spatial174

pattern every year without following any specific pattern. Persistent structures imply that175

species have a spatial distribution that does not change every year, while the progressive176

ones indicate that the spatial pattern changes in a correlated way from one year to another.177

The progressive structure contains an autoregressive ρt parameter that controls the degree178

of autocorrelation between consecutive years. This ρt parameter is bounded to [0, 1], where179

parameter values close to 0 represent more opportunistic behaviors and parameter values180

close to 1 represent more persistent distributions along time. We also included an extra tem-181

poral effect ft using a second order random walk (RW2) effect to infer any mean intensity182

changes over time.183

For each spatio-temporal model we considered Yst and Zst that denote, respectively, the184

spatio-temporally distributed occurrence and the conditional-to-presence abundance, where185

s = 1, ....., nt is the spatial location and t = 1, ...., T the temporal index, being i = 1, ..., I the186

bathymetry in location s. Occurrence Yst, was modeled using a Bernoulli distribution with187

a logit link and conditional-to-presence abundance, Zst, with a gamma distribution with a188
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log link, to capture the overdispersion of the data. Then:189

Yst ∼ Ber(πst)

Zst ∼ Gamma(µst, φst)

logit(πst) = α(Y ) + fi(dist) + U
(Y )
st

log(µst) = α(Z) + θifi(dist) + U
(Z)
st

(1)

where πst represents the probability of occurrence at location s at time t and µst and φst are190

the mean and dispersion of the conditional-to-presence abundance. The linear predictors,191

which contain the effects that link the parameters πst and µst include: α(Y ) and α(Z), that192

represent the intercepts of each respective variable; fi(dist) is the bathymetric effect modelled193

as a RW2 smooth function that allow us to fit any possible non-linear relationship of the194

bathymetry (Fahrmeir and Lang, 2001) and it is scaled by θi to allow for differences in scale195

across the different linear predictors in shared effects; the final terms U
(Y )
st and U

(Z)
st refer196

to the spatio-temporal structure of the occurrence and conditional-to-presence abundance197

respectively and may follow any of the three spatio-temporal structures described above.198

Fishery-dependent data199

Similarly to the precedent abundance data, the fishery-depended data-set was analyzed using200

Bayesian spatio-temporal models with a gamma distribution and log link. All the spatio-201

temporal structures were tested and the bathymetry was included as possible predictor and202

fitted using a RW2 model. In order to capture the intra-annual variability of this abundance203

index, the month of the fishery haul was also included in the model as fixed effect.204

Fishing effort was included as the duration of gear deployment (i.e. soak time). As it205

is known that gear saturation can exert a significant nonlinear effect on catchability this206

variable was included as continuous explanatory variable (in minutes, log transformed).207

The remaining potential source of abundance variability could be due to differences among208

vessels caused by a skipper effect or unobserved gear characteristics. To remove bias caused209

by vessel-specific differences in fishing operation, we included a vessel random effect.210

The Bayesian approach requires the assignation of prior distributions to every parameter211

of the model. For both fishery-independent and depended data-sets, vague prior distributions212

with a zero-mean and a standard deviation of 100 were implemented for all the fixed effects,213

the variance of the abundance process, and the scaling parameter (θ) of the shared effects.214

For the geostatistical terms and the ρ parameters of the of the second order random walks215

penalised complexity priors (PC priors, weak informative priors) (Fuglstad et al., 2018)216

were assigned. Specifically, we used PC priors that satisfied the following criteria: 1) the217

probability that the spatial effect range was smaller than 150 km was 0.15, to avoid very218

small spatial autocorrelation ranges, 2) the probability that the spatial effect variance was219

greater than 1 was 0.20, to avoid masking the bathymetric effect through the spatial effect,220

and 3) the probability that ρ was greater than 0.5 in the occurrence model and greater than221

the observed abundance standard deviation in the abundance model were 0.01. A sensitivity222

analysis of the choice of priors was performed by verifying that the posterior distributions223

concentrated well within the support of the priors.224
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Model selection225

In both cases, model selection was performed testing all possible combinations among the226

possible spatio-temporal structures and variables and using the Watanabe Akaike Informa-227

tion Criterion (WAIC) (Watanabe, 2010) as criteria of the goodness of fit and the Log-228

Conditional Predictive Ordinates (LCPO) (Roos et al., 2011) as predictive quality measures.229

For both measures, the smaller the score the better the model.230

SPiCT, stochastic surplus production model in continuous time231

The SPiCT explicitly models both abundance and fishing dynamics as stochastic processes232

in a state-space framework. It is formulated as a continuous time model to allow a repre-233

sentation of seasonal fishing patterns and incorporation of sub-annual catch and index data234

Pedersen and Berg (2017).235

The most important input for fitting SPiCT is catch data (by weight). Pedersen and Berg236

(2017) define the catch as the product of instantaneous fishing mortality and stock biomass.237

Fishing mortality is not decomposed into the product of effort and catchability. Therefore,238

it is not necessary to standardise the catch data based on changes in fishing efficiency: all239

such changes will be encompassed in the instantaneous fishing mortality.240

Here we used as catch data the common sole official landings provided by Portugal and241

Spain in ICES divisions 8.c and 9.a (Figure 3) (2000-2019). For this time-series the ob-242

servation noise was not constant in time. Indeed, there is some evidence that the common243

sole catch could be misclassified in the past, which means that common sole official landings244

might not then have corresponded only to this species but a mix of Solea solea, Solea sene-245

galensis and Pegusa lascaris. Using port sampling length data it was possible to separate the246

Solea spp. landings and apply the proportions to provide a raised landings for the common247

sole. However, as in the SPiCT it is possible to add knowledge that certain data points are248

more uncertain than others, the first 10 years of the catch were considered uncertain relative249

to the remaining time series and therefore are scaled by a factor 5. In particular using the250

stdevfacC vector that contains the factor that is multiplied onto the standard deviation of251

the data points of the corresponding observation vector.252

Catch data must be supplemented in the SPiCT model by at least one independent abun-253

dance index. An important advantage of SPiCT over other surplus production models is that254

it allows the use of multiple abundance indices with different time-series in addition to the255

catch time series. Here we performed three different runs using: 1) only the spatio-temporal256

abundance index produced with fishery-independent data; 2) only the spatio-temporal abun-257

dance index produced with fishery-dependent data; 3) both produced spatio-temporal abun-258

dance indices.259

The continuous-time SPiCT formulation, time-stepping is achieved through an Euler260

scheme with a default time increment dtEuler equal to 1/16 (where time is measured in261

years). As common sole catch data were collected annually, the discrete-time realisation of262

SPiCT, obtained by setting the time-step dtEuler equal to one, was considered sufficient.263

For the ratios between observation and process error for abundance and fishing dynamics,264

α and β, we specified priors vaguely informative priors as recommended by Pedersen and265

Berg (2017). Optimisation of the model fit is achieved using log-likelihood functions so that266
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many variables and parameters are log-transformed as standard. Therefore, log α and log β267

were assumed to have normal distributions with mean values of log 1 and standard deviations268

equal to 2.269

Production curve shape parameter n was allowed to vary during optimisation and we270

prescribed a vaguely informative prior normal distribution for log n with a mean of log 2271

(corresponding to the logistic curve) and standard deviation 2. These prior specifications272

are considered a fair reflection of our prior knowledge of the system. The SPiCT model fit273

is relatively insensitive to increases in the standard deviation of the lognormal distributions;274

a standard deviation of 10 did not cause any visible changes in the biomass and fishing275

mortality trends. No other prior information was available regarding the fishing process or276

biomass production.277

Model and post-processing R code R Core Team (2017) supplied by Pedersen and Berg278

(2017) was used to fit the model and analyze the results.279

Results280

Fishery-independent data281

According to model selection scores (see Table 2), the occurrence and abundance distri-282

butions of the common sole were progressive. Persistent model scores were quite close to283

the progressive structure, suggesting that distributions were relatively persistent between284

2001 and 2019. These results were supported by the strong temporal correlation parameters285

in the progressive spatio-temporal model (0.98 and 0.96 for the occurrence and abundance286

processes, respectively).287

The predicted bathymetric distribution of occurrence and abundance revealed a clear288

decrease with depth from 60 m (Figure 4). Bathymetry explained 41% of spatio-temporal289

variation of the abundance process, which suggests that this habitat variable has an impor-290

tant impact on spatial variation in common sole density.291

The overall abundance of the common sole shows a slightly increasing trend (Figure 5).292

Note that the marginal temporal effect of Figure 5 is in the log scale.293

Occurrence and abundance maps (Figures 6 and 7 respectively) highlight two main294

preferential habitats for the common sole, located over the continental shelf in front of La295

Coruña and Bilbao cities. It worth to be mentioned that the predictions did not include the296

extra temporal effect ft RW2.297

Fishery-dependent data298

Model selection scores (see Table 3) show that the abundance distribution of the common299

sole was progressive. The ρ parameter was 0.45, suggesting more opportunistic distributions300

(i.e., uncorrelated distributions between years).301

The predicted bathymetric distribution revealed an increasing abundance trend until 100302

m and then a decreasing pattern (Figure 8). Bathymetry explained 31% of spatio-temporal303

variation of the abundance process.304
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The overall abundance of the common sole shows a slightly decreasing trend (Figure 9).305

Note that the marginal temporal effect of Figure 9 is in the log scale.306

Abundance maps (Figure 10) highlight not persistent hot-spots but overall two main307

preferential habitats for the common sole can be identified. They are located one in front of308

La Coruña city and another in the northern part of the area in front of the Ria do Viveiro.309

Also in this case, it worth to be mentioned that the predictions did not include the extra310

temporal effect ft RW2.311

Abundance indices312

When the produced spatio-temporal abundance indices are compared with the observed313

data, in both cases it is possible to see that temporal tendencies are maintained but more314

smoothed indices are obtained (Figures 11 and 12). However both indices showed significant315

correlation with observer data, 0.65 with fishery-independent data and 0.70 for fishery-316

dependent.317

SPiCT318

For the three runs the assessment converged and all the variance parameters of the model319

were finite as recommended by Pedersen and Berg (2017). However in the three cases320

some of the model assumptions based on one-step-ahead residuals (i.e. auto-correlation and321

normality) were violated (Figures 13, 14 and 15). It worth to be mentioned that slight322

violations of this assumptions do not necessarily invalidate model results (Mildenberger et al.,323

2020).324

Table 4 shows the model parameter estimates with 95% confidence intervals for all the325

models. Results are very different among models and the 95% confidence intervals are very326

wide.327

Conclusions328

Overall the inclusion of the spatio-temporal indices improved the results of the SPiCT model.329

Indeed before the standardization of the indices (i.e. using observed data) the SPiCT model330

did not converge at all. However results are very preliminary and they need to be improved.331

Future steps will be:332

1) improving the standardization of the fishery-independent and dependent data. For the333

fishery-dependet data standardization could be improved adding seasonal trends and more334

effort information.335

2) include in the predictions and consequent abundance indices the extra temporal effect336

ft RW2.337

3) Pedersen and Berg (2017) outline that the SPiCT formulation describes the dynamics338

of the exploited part of the fish stock. Therefore, abundance index need to be modified to339

include only the size-classes exploited by fishery.340

4) sensitive analysis for the production curve skewness parameter n need to be performed.341
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Tables404

Model Notation Description

Opportunistic Ust = W t Different and uncorrelated realizations of the spatial
field every year.

Persistent Ust = W + f(t) A common realization of the spatial field for all years
and an additive temporal trend f(t)

Progressive Ust = W t + ρUst−1 Spatial realizations change over time through a first
order autoregressive model. ρ controls the level of
correlation between subsequent time events.

Table 1: Summary of fitted spatio-temporal models Ust. W represents a geostatistical spatial
field, f(t) is a temporal trend function and ρ is an autoregressive correlation parameter
bounded to [0,1].

Model WAIC LCPO Time (sec.)
Persistent structure 1732.17 0.52 128.23
Opportunistic structure 1770.42 0.54 121.57
Progressive structure 1728.22 0.61 7882.21

Table 2: Spatio-temporal structures comparison for the conditional-to-presence abundance
distribution of common sole model fishery-independent data based on WAIC and LCPO
scores. Time scores refer only to the estimation process of the model. The best model is
highlighted in bold.

Model WAIC LCPO Time (sec.)
Persistent structure 57602.89 6.62 102.05
Opportunistic structure 57685.80 6.63 107.175
Progressive structure 57290.89 6.50 834.471

Table 3: Spatio-temporal structures comparison for abundance distribution of common sole
model fishery-dependent data based on WAIC and LCPO scores. Time scores refer only to
the estimation process of the model. The best model is highlighted in bold.

12



Parameter estimate cilow ciupp log.est

RUN 1
Bmsyd 266.27011 75.49005 939.19361 5.584511
Fmsyd 15.77595 14.83957 16.77142 2.758487
MSY d 4200.66483 1246.62167 14154.72351 8.342998
K 4200.6648274 1246.6216654 1.415472e+04 8.3429981
m 532.5402196 150.9800969 1.878387e+03 6.2776584
RUN 2
Bmsyd 3.324751e+05 512.828416 2.155490e+08 12.714320
Fmsyd 5.654210e-02 0.011523 2.774462e-01 -2.872769
MSY d 1.879885e+04 21.075496 1.676813e+07 9.841551
m 1.879885e+04 21.0754961 1.676813e+07 9.841551
K 6.649501e+05 1025.6568328 4.310981e+08 13.407467
RUN 3
Bmsyd 1945.35 442.82 8546.08 7.57
Fmsyd 0.3525605 0.08096485 1.53522 -1.042533
MSY d 685.6973461 345.63207027 1360.35076 6.530436
m 7.073595e+02 359.48682933 1.391866e+03 6.5615390
K 3.964599e+03 904.04950017 1.738627e+04 8.2851601

Table 4: Parameter estimates (deterministic) and associated confidence intervals for MSY
parameter m, carrying capacity k, biomass at MSY Bmsyd, fishing at MSY Fmsyd and
MSY d.
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Figures405

Figure 1: Map of the study area showing the distribution of the annual sampling locations
of fishery-independent hauls.
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Figure 2: Map of the study area showing the distribution of the fishery-dependent sampling
locations.
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Figure 3: Common sole catch in ICES divisions 8.c and 9.a.
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Figure 4: Smooth functions of the predicted occurrence (top) and abundance (bottom)
for the bathymetry effect using fishery-independent data-set. The solid line is the smooth
function estimate, and shaded regions represent the approximate 95% credibility interval.
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Figure 5: Marginal temporal effects in the linear predictor scale (logarithmic link) of common
sole for fishery-independent data. Shaded regions represent the approximate 95% credibility
interval.
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Figure 6: Prediction maps (2001-2019) of the common sole occurrence estimated by the
hurdle Bayesian spatio-temporal model for fishery-independent data.
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Figure 7: Prediction maps (2001-2019) of the common sole abundance estimated by the
hurdle Bayesian spatio-temporal model for fishery-independent data.
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Figure 8: Smooth functions of the predicted abundance for the bathymetry effect using
fishery-dependent data-set. The solid line is the smooth function estimate, and shaded
regions represent the approximate 95% credibility interval.
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Figure 9: Marginal temporal effects in the linear predictor scale (logarithmic link) of common
sole for fishery-dependent data. Shaded regions represent the approximate 95% credibility
interval.
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Figure 10: Prediction maps (2000-2018) of the common sole abundance estimated by the
Bayesian spatio-temporal model for fishery-dependent data.
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Figure 11: Spatio-temporal abundance index obtained for fishery-independent data (2001-
2019) versus the survey abundance index standardized for the three bathymetric strata (i.e.
70–120 m, 121–200 m and 201–500 m).
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Figure 12: Spatio-temporal abundance index obtained for fishery-dependent data (2000-
2018) versus observed fishery-dependent data.
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Appendix406

Figure 13: Standard OSA residuals for the run 1 surplus production model obtained using
catch data and the spatio-temporal index of fishery-independent data.
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Figure 14: Standard OSA residuals for the run 2 surplus production model obtained using
catch data and the spatio-temporal index of fishery-dependent data.
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Figure 15: Standard OSA residuals for the run 2 surplus production model obtained using
catch data and both spatio-temporal indices.
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