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Why are complex regression models needed?

Spatial dependency

Temporal dependency

Other sources of
dependency in data

The First Law of Geography, according to
Waldo Tobler, is "everything is related to
everything else, but near things are more
related than distant things."

This first law is the foundation of the
fundamental concepts of spatial
dependence and spatial autocorrelation.

The impact of previous behavior on current
behavior.

E.g. Hierarchical Dependency.



Spatial dependency

The property of random variables taking values, at pairs of locations a
certain distance apart, that are more similar (positive autocorrelation) or
less similar (negative autocorrelation) than expected for randomly
associated pairs of random observations.

In the case of fish species distributions, spatial

Example : :
P autocorrelation occurs mostly because of habitat
heterogeneity, or because of biotic processes such as
Almerts conspecific attraction or competition with another

species.

Sampling locations for the presence (-) and the
absence (°) of the Mediterranean horse Mackerel
in the bay of Almeria

(a) Bathymetry (b) Chlorophyll-a

Munoz, F., Pennino, M. G,, Conesa, D., Lopez-Quilez, A., & Bellido, J. M. (2013). Estimation and prediction of the 2
spatial occurrence of fish species using Bayesian latent Gaussian models.Stochastic Environmental Research
and Risk Assessment,27(5), 1171-1180.




Formulation

Intercept Spatial effect

=+ +
j=1

Response variable Covariables
effect

The spatial effect represents the intrinsic spatial variability of the data after excluding other
covariables (e.g. environmental covariables).



Why go Bayesian?

Allow to incorporate prior information
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Why go Bayesian?

2 Better estimation of the uncertainty
(posterior probability distributions)
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Median for probability of occurrence.

First quartile. Third quartile.

|E..E Munoz, F., Pennino, M. G, Conesa, D., Loépez-Quilez, A., & Bellido, J. M. (2013). Estimation and prediction of the spatial occurrence of fish species using

|=;| Bayesian latent Gaussian models.Stochastic Environmental Research and Risk Assessment,27(5), 1171-1180.




Why go Bayesian?

Spatio-temporal
abundance mayps for
Merluccius
merluccius recruits in
the northeast Atlantic

Izquierdo, F., Paradinas, |, Cervifo, S,
Conesa, D., Alonso-Fernandez, A, Velasco,
F., .. & Pennino, M. G. (2021). Spatio-
temporal assessment of the European
hake (Merluccius merluccius) recruits in
— — g the _north(;rn Iberian Peninsula.Frontiers in
Marine Science,8, 1.




Why go Bayesian?

Pennino, M. G., Paradinas,
[, lllian, J. B, Mufoz, F,
Bellido, J. M., Lépez-Quilez,
A, & Conesa, D. (2019).

Accounting for
preferential sampling in
species distribution
models.Ecology and

evolution,9(1), 653-663.

(a) Non-preferential sampling model (b) Preferential sampling model 7



Why go Bayesian?

Allow to model more complicated
data and situations

Barber, X,, Conesa, D, Lladosa, S., & Lopez-Quilez, A. (2016). Modelling the presence of disease under
spatial misalignment using Bayesian latent Gaussian models.Geospatial health,11(1).

Misalignment problem:
the sixty-seven official
weather stations in Galicia
do not coincide with the
farms where data were
observed.



Which tool should be used?

The Integrated Nested Laplace Approximation (INLA) is a method
for approximate Bayesian inference.

In the last years it has established itself as an alternative to other

methods such as Markov chain Monte Carlo because of its speed and
ease of use via the R INLA package.



Which tool should be used?

The spatial component is a continuous Gaussian field (GF) with
Matérn covariance and is approximated by a Gaussian Markov

random fields (GMRF) which is a solution of a stochastic partial
differential equation (SPDE).

. \ A very popular correlation function is the Matérn correlation function It has a scale parameter & > 0 and
/

\ 1 a smoothness parameter » > 0. For two locations s; and s;, the stationary and isotropic Matérn
correlation function is

gl-v e
01/ ; \ Coru(U(s:),Uls;)) = W(N s —s; )" Kol |l s —s511)
/. / \, \

Y ) N\ \\\ where ||. || denotes the Euclidean distance and K, is the modified Bessel function of the second kind.
Z - \N The Matérm covariance function is a2Cora (U(s;), U(s;)), where &3 is the marginal variance of the
————

INLA

The benefit is that the GMRF representation of the GF, which
can be computed explicitly, provides a sparse representation of
the spatial effect through a sparse covariance matrix. 0



Fisheries science applications

Catch per unit effort (CPUE)
standarization

Predicted madian CPUE

Pseudoyear

CPUE's are crucial for estimating fish population
biomass.

CPUE's can be influenced by several factors as vessel
size, engine power, bathymetry or location/area
(standarization process).

Species distribution models (SDMs)

SDMs link species occurrence and
abundance to unobserved
spatiotemporal autocorrelation

effects and to habitat characteristics.

2001 2002 2003

Bobok
zzzzz2
Ly

2004 2005 2006

T O I8

2007 2008 2009

Bubut
zzzzz
Ly

2010 2011 2012

N
I
17

2013 2014 2015

2016 2017 2018

)
]
]

2019

5,5 5,5
s5a8s 55552
33233 233332
P T iy

&

-

2

Longitude

11



latitude

Catch per unit effort (CPUE)
standarization

“The unstandardized CPUE corresponded to the number of
fish caught divided by the number of hooks in each cell

(N/hooks)”

“» Continuous response variable: non standardized
CPUE (no Q’s)

“+ Regular lattice 221 cells (5x5 degrees)

“+ Pseudoyear time variable (year and season).

Simulated CPUE
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longitude
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Catch per unit effort (CPUE)
standarization

~Gamma(use, ¢)

log(.ust) =a+ g(t) + Ug

= Wst + pUs -1, Wse~N(0,Z)

In order to improve the index we fitted Bayesian
spatiotemporal models for lattice data with R INLA

Zg represents the CPUE at cell sand time t, and

Use and, d the mean and variance of its gamma
distribution.

g(t) corresponds to the temporal trend fitted
through a RW2 effect over the years.

U, refers to spatiotemporal structure.

¥ is the matern variance-covariance matrix.
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Catch per unit effort (CPUE)
standarization

Mean spatiotemporal
effect

We took 200 samples of the posterior distribution for all

model components

Time smoothed
(RW2) trend
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Species distribution models (SDMs)

Study of the spatiotemporal distribution of common sole (Solea solea) in the northern Iberian
waters

Data

Common sole data was collected during the
scientific survey series performed by IEO between
2001 and 2019.

Presence/absence variable was considered to ' R RN N
Mmeasure the occurrence probability of the species. AP oo RN

T s
The weight by haul (kg) was used as an indicator of

the conditional-to-presence biomass of the species. L7 e




Species distribution models (SDMSs)

Yse~Ber(..)
Zo~Gamma(/i.., d)

k
logit(n.,) = a®™ + g(t) + zf](Xj) + Ug)
=1

k
log(r.) = a® + 0g(®) + Y n;f (%)) + U
=1

|

Y+ occurence and Zg; conditional-
to-presence biomass.

|

s probabity of occurrence at
location s and time t.

Uge and ¢ the mean and
dispersion conditional-to-
presence biomass.
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Species distribution models (SDMSs)

Yst ~Ber (nst)
Zge~Gamma(Use, d)

logit(mg) = a® + g(t) +

logit(ug) = a'® +6g(t) +

D= 1D1=

~
Il
[

g(t) the temporal trend as RW2 effect
over the years.

+ fi(X;), j = 1, ..., k, functions of extra
covariables X;.

Us(f) and US(tZ) the spatiotemporal
structures.
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Species distribution models (SDMs)

Ust = Wy, Wt ~N(0,X) being Z the matern

Opportunistic . . .
variance-covariance matrix

[
|

Uss = W, We~N(0,Z) being Z the matern

Persistent . ) ]
variance-covariance matrix
[ progreSSive US‘t = WSt + pUS,t—11 WSt~N(O' Z) be|ng hX the

matern variance-covariance matrix.




Model WAIC LCPO

1732 0.52 .
Autoregressive parameter values: p = 0.98

and 0.96 for the occurrence and conditional-to
Opportunistic 1770 0.54 presence-biomass processes, respectively.

x Watanabe Akaike information criterion

(WAIC) and log-conditional predictive ordinates
(LCPO).




Bathy. effect

Bathy. effect

Species distribution models (SDMSs)
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Predicted occurrence (top) and conditional-presence-abundance
(bottom) for the bathymetry effect. Shaded regions represent the

approximate 95% credibility interval.
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Marginal temporal shared effect in the linear predictor scale (logarithmic
link) of common sole occurrence (higher panel) and conditional-to-presence-
abundance processes (lower panel
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Latitude

Species distribution models (SDMs)
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These examples serve as an evidence that INLA Bayesian
spatiotemporal models are a powerful tool for addressing
complex spatio-temporal challenges in a wide range of fields.
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