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Background30

Spatial management of commercial resources is becoming an effective measure to be broadly31

implemented in the European Seas. However, it is currently unconnected from the pop-32

ulation dynamics and the official assessment. Indeed, it is known that species abundance33

can be influenced by the environmental features of its own habitat and/or by biotic process34

that are spatially structured (e.g. reproduction, predation, among others). Usually, this35

variability is assumed to be implicitly in the abundance trends used as inputs of the stock36

assessment models and it is not explicitly taken into account. Within this context, in this37

study we propose a novel methodological approach for an effective implementation of spa-38

tial and ecological knowledge that could help to embrace species spatial management in an39

operational way, providing a more holistic and ecosystem-based approach. As case study40

we used the European hake (Merluccius merluccius) in the northern continental shelf of the41

Iberian Peninsula. Hake data by length category collected during the scientific survey se-42

ries “DEMERSALES” by the “Instituto Español de Oceanograf́ıa” (IEO) from 1992-to 201743

were analyzed using hierarchical Bayesian spatial-temporal models (H-BSTMs), considering44

as environmental variables Sea Bottom Temperature, Sea Bottom Salinity, bathymetry and45

rugosity of the seabed. H-BSTMs link spatially information on hake abundance to environ-46

mental variables to estimate and predict where (and how much of) this species is likely to47

be present in the studied area in a specific year.48

Indices of abundance obtained as outputs from H-BSTMs, performed with the innovative49

integrated nested Laplace approximation (INLA) methodology and software, are then used50

as inputs for the GADGET (Globally applicable Area Disaggregated General Ecosystem51

Toolbox) stock assessment model (Figure 1). Finally, a comparative analysis of the results52

obtained with the GADGET model using the H-BSTMs abundance indexes and the ones53
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commonly used in stock assessment evaluations is performed.54

We argue that the analytical framework proposed in this study allowed to (1) assess which55

environmental factors influence the different life stages of the hake in the northern continental56

shelf of the Iberian Peninsula, (2) identity the areas in which the different life stages are57

more aggregated and their spatial-temporal fluctuations, and (3) could be a decisive step58

to improve habitat-based standardization abundance indexes and stocks’ management in59

European Seas.60

Figure 1: Working path representing how hierarchical Bayesian spatial-temporal models
(H-BSTMs) will inform stock assessment models.

Material and methods61

Data62

The data used in this study were collected during the scientific survey series “DEMER-63

SALES” by the “Instituto Español de Oceanograf́ıa” (IEO) carried out in autumn (Septem-64

ber to October) from 1992 to 2017. The DEMERSALES survey makes use of a stratified65

sampling design based on depth with three bathymetric strata: 70–120 m, 121–200 m and66

201–500 m. Sampling stations consisted of 30 min trawling hauls located randomly within67
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each stratum at the beginning of the design. However, as a result of weather conditions or68

other external factors, station location varied slightly in some years and hauls were therefore69

not always performed at exactly the same latitude and longitude (Pennino et al., 2019). Ap-70

proximately 128 hauls (minimum 119 and maximum 141) divided between the three bathy-71

metric strata were performed every year in this zone (Figure 2), using the baka 44/60 gear72

(Sánchez and Gil, 2000).73

Figure 2: Study area and sampling locations (black dots) of the DEMERSALES surveys
(1997-2016). Bathymetric contours indicate the 200 and 800 m isobatas.

With the European hake length distribution accessible to this gear three groups were cre-74

ated: recruits, which include all specimens with a length <21 cm; adults, individuals between75

12 and 35 cm; and individuals larger than 35 were aggregated in a separated category.76

For each one of this group two different variables were analyzed in order to describe77

the spatio-temporal behaviour of the European hake species. First, we considered the pres-78

ence/absence variable to measure the occurrence of the species in each life stage. Secondly,79

we used a discrete variable, the total number of individuals per 30 minutes of trawling (i.e.80
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number per unit effort, NPUE), as an indicator of the conditional-to-presence abundance of81

the species.82

Environmental variables83

Three environmental variables were considered as potential or known predictors of the Eu-84

ropean hake life-stage distribution which may influence the habitat selection of this species.85

These include two oceanographic variables: Sea Bottom Temperature (SBT in C) and Sea86

Bottom Salinity (SBS in PSU), and the bathymetry (in metres).87

SBT and SBS were added to the analysis as they are strongly related to marine system88

productivity, affecting nutrient availability and water stratification (Pennino et al., 2013).89

SBT and SBS values were collected during the survey with a sounding CTD (conductivity,90

temperature and depth) in different random sampling points of the study area. Monthly91

SBT and SBS maps of the entire area were obtained for each year of the studied period with92

the Radial basis functions (RBF) tool in ArcGIS 10.1.93

The bathymetry map was retrieved from the European Marine Observation and Data94

Network (EMODnet, http://www.emodnet.eu/) with a spatial resolution of 0.02 x 0.02 dec-95

imal degrees.96

In order to ensure the same spatial resolution, all environmental data were aggregated to97

the lower spatial resolutions using the raster package (Hijmans, 2018) in the R software (R98

Core Team, 2018). All covariates were explored for collinearity, outliers, and missing values99

before their use in the models following the approach of Zuur et al. (2010). In particular100

correlation among variables was tested using the Pearson’s correlation, while the collinearity101

computing the Generalized variance-inflation factors (GVIF) (Fox and Weisberg, 2011).102

Finally, to facilitate visualization and interpretation, the explanatory variables were stan-103

dardized (difference from the mean divided by the corresponding standard deviation) (Gel-104

man, 2008).105
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Characterizing the spatio-temporal behaviour of the European hake106

This study used the spatio-temporal model structure comparison proposed by Paradinas107

et al. (2017) to categorize the spatio-temporal behaviour of the European hake in either op-108

portunistic, persistent or progressive (see Table 1 and Figure 5). In particular, opportunistic109

structures indicate that species change their spatial pattern every year without following any110

specific pattern. Persistent structures imply that species have a spatial distribution that is111

common every year, while the progressive ones indicate that the spatial pattern of the pro-112

cess change from one year to another. The progressive structure contains a ρt parameter (see113

Table 1) that controls the degree of autocorrelation between consecutive years. This ρt pa-114

rameter is bounded to [0, 1], where parameter values close to 0 represent more opportunistic115

behaviors and parameter values close to 1 represent more persistent distributions.116

Figure 3: Simulated types of spatio-temporal scenarios. From Paradinas et al., (2017).
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Modelling European hake occurrence and abundance distribution117

Spatio-temporally fishery abundance data often result in observing large proportions of zeros,118

i.e. zero inflated data. These data are generally tackled using independent two-part models,119

also known as delta models. In these models, the occurrence and the conditional-to-presence120

abundances (NPUE) are modeled independently. However, abundance and detection prob-121

ability are often related (Kéry et al., 2005), which violates the independence assumption of122

common delta models. This study incorporated the fact that both processes could be re-123

lated by fitting shared environmental effects and/or spatio-temporal structures as described124

in Paradinas et al. (2017). In this way we combined information on the presence/absence of125

the species under study and its abundance.126

In particular, Yst and Zst denote, respectively, the spatio-temporally distributed occur-127

rence and the conditional-to-presence abundance (NPUE), where s = 1, ....., nt is the spatial128

location and t = 1, ...., T the temporal index, being i = 1, ..., I the environmental variable129

in location s. Then, as usual with this kind of variables, we modeled the occurrence, Yst,130

using a Bernoulli distribution. In the case of the NPUE, Zst, our selection to model it was131

a negative binomial distribution, a probability distribution that captures the overdispersion132

of the data. The mean of both variables was then related via the usual link functions (logit133

and log, respectively) to the bathymetric and spatio-temporal effects:134

Yst ∼ Ber(πst)

Zst ∼ NB(µst, σst)

logit(πst) = α(Y ) + di + U
(Y )
st

log(µst) = α(Z) + θidi + U
(Z)
st

∆2di = di − 2di+1 + di+2 ∼ N(0, ρd)

(1)

where πst represents the probability of occurrence at location s at time t and µst and σst135

are the mean and variance of the conditional-to-presence abundance. The linear predictors136
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containing the effects to which these parameters πst and µst are linked are formed with:137

α(Y ) and α(Z), the terms representing the intercepts for each variable; di which stands for a138

second order Random Walk model that allows us to fit any possible non-linear relationship of139

the environmental variables (Fahrmeir and Lang, 2001); the final terms U
(Y )
st and U

(Z)
st refer140

to the spatio-temporal structure of the occurrence and conditional-to-presence abundance141

respectively and may follow any of the three spatio-temporal structures described in the142

previous section.143

The spatial field (Ws) was modelled as a multivariate normal distribution with zero144

mean and a Matérn covariance function that depend on its range (rw) and variance (σw).145

The temporal trend f(t) could follow any suitable function, either a linear effect, a smooth146

effect, an unstructured random term, etc.147

Vague prior distributions with a zero-mean and a standard deviation of 100 were im-148

plemented for all the fixed effects, the variance of the abundance process, and the scaling149

parameter of the shared effects. For the geostatistical terms and the ρ parameters of the150

second order Random Walks (RW2) PC priors (Simpson et al., 2017) were assigned fixing151

the probability of the range of the spatial effect at 0.15, the probability of the variance of152

the spatial effect at 0.20 and the probability that the precision of the RW2 effects at 0.01.153

A sensitivity analysis of the choice of priors was performed by verifying that the posterior154

distributions concentrated well within the support of the priors.155

Model selection was performed testing all possible combinations among the possible156

spatio-temporal structures and variables and using the Watanabe Akaike Information Cri-157

terion (WAIC)(Watanabe, 2010) as criteria of the goodness of fit and the Log-Conditional158

Predictive Ordinates (LCPO) (Roos et al., 2011) as predictive quality measures. For both159

measures, the smaller the score the better the model. All these models and comparisons160

were fitted for all the European hake length groups.161

Models were fitted using the integrated nested Laplace approximation (INLA) package162

(Rue et al., 2009) in the R environment.163
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Results and Discussion164

Do the computational time at the moment we run these type of models only for the recruits165

group. The future steps will be do the same analysis for the others groups and use the166

derived abundance indices in the GADGET model to assess which kind of changes could167

have on the stock assessment of the European hake in this area.168

European hake recruits169

For the European hake recruits the best spatio-temporal structure was the progressive with-170

out shared spatio-temporal effects (Table 2). Concerning the spatio-temporal structures,171

shared components did not improve the progressive fitted model (Table 2), as also occurred172

in (Paradinas et al., 2017). This result could suggest that hake recruitment data is generated173

through two different processes; the probability of observing hake recruits and, if present,174

their abundance. However, the nature of the process under study induces to believe that this175

apparent independence is a consequence of the high sampling effort of the survey relative176

to the abundance of hake recruits, rather than being two different processes. The DEMER-177

SALES survey trawls a relatively big areas, therefore the probability of observing at least178

one individual of an abundant fish species, such as hake, is quite high at environmentally179

not-too-challenging areas. Similarly, if effort was diminished, the detection probability would180

decrease proportionally and thus record a lot more zeros in our dataset.181

No high correlation (Pearson’s correlation lower than 0.60) and collinearity (Variance182

Inflation Factor, GVIF: values lower than 3) were found among the environmental variables.183

Consequently all variables were used in the models.184

Bathymetry was the most important variable to define the occurrence and NPUE distri-185

bution of the hake recruits in the studies areas (Table 3). Indeed, although the best models,186

in terms of WAIC, were the one with the bathymetry and the SBS or SBS, the difference is187

negligible with the model that include only the bathymetry (i.e. lower than 5 units). For188
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this reason, and following a parsimony principle, the selected model was the one with the189

bathymetry, fitted as shared smoothed effect between the two processes (i.e. occurrence and190

NPUE).191

The selection of an autoregressive temporal term in the model suggests the presence of192

a certain degree of temporal continuity in the spatial distribution of hake recruits in the193

study area. These results were supported by the high temporal correlation parameters of194

the progressive spatio-temporal structures (0.99 and 0.96 for the occurrence and conditional-195

to-presence abundances respectively).196

The smoothed bathymetric effect highlighted that abundance of hake recruits decreases197

gradually after the optimum 150–200 metre strata (Figure 4).198

Figure 4: Bathymetric smoothed effect for both occurrence and abundance variables.

In addition, the posterior mean of the spatial effect maps in Figures 5 and 6 show a199

main persistent hot-spot along the continental shelf of the Artabrian gulf (off La Coruña).200

Although the recruitment of hake is mainly concentrated in this specific areas there have201

been smooth changes in the relative abundance and the spatial location from year to year.202
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Figure 5: Posterior means of the spatial effect for the progressive model with the shared
bathymetric smoothed effect for the occurrence pattern.
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Figure 6: Posterior means of the spatial effect for the progressive model with the shared
bathymetric smoothed effect for the abundance pattern.
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Tables246

Model Notation Description

Opportunistic Ust = Wst Different and uncorrelated realizations of the spa-
tial field every year.

Persistent Ust = Ws + f(t) A common realization of the spatial field for all
years and an additive temporal trend

Progressive Ust = Wst + ρtUst−1 Spatial realizations change over time using a first
order autoregressive model

Table 1: Explanation of the three different spatio-temporal structures compared in the
models.

Model WAIC LCPO Time (sec.)
Persistent Shared Effects 15879.45 2.90 80.91
Persistent Not Shared Effects 16001.28 2.92 118.08
Opportunistic Shared Effects 16095.17 2.95 59.82
Opportunistic Not Shared Effects 16231.99 2.95 79.56
Progressive Shared Effects 16774.70 3.05 401.62
Progressive Not Shared Effects 15846.09 3.11 7138.10

Table 2: Spatio-temporal structures comparison for the conditional-to-presence abundance
distribution European hake recruits’ model based on WAIC and LCPO scores. Time scores
refer only to the estimation process of the model. The best model is highlighted in bold.
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Model WAIC LCPO Time
Progressive Bathymetry Shared Effects 15659.88 3.02 13667.78
Progressive SBS Shared Effects 15848.98 3.11 7168.39
Progressive SBT Shared Effects 15800.53 3.15 11032.17
Progressive Bathymetry SBS Shared Effects 15655.22 3.05 16488.46
Progressive Bathymetry SBT Shared Effects 15657.85 3.07 17097.45
Progressive SBS SBT Shared Effects 15804.95 3.16 11683.53
Progressive Bathymetry Not Shared Effects 15668.76 3.03 10143.00
Progressive SBS Not Shared Effects 15852.73 3.11 10662.15
Progressive SBT Not Shared Effects 15798.90 3.14 9416.98
Progressive Bathymetry SBS Not Shared Effects 15672.92 3.03 14104.07
Progressive Bathymetry SBT Not Shared Effects 15672.60 3.06 15135.95
Progressive SBS SBT Not Shared Effects 15805.43 3.14 11152.92

Table 3: Environmental effects comparison for the conditional-to-presence abundance distri-
bution European hake recruits’ model based on WAIC and LCPO scores. Time scores refer
only to the estimation process of the model. The best model is highlighted in bold.
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